

БЛОК КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЙ 1603

из состава виброаппаратуры СИЭЛ-1600 "Тандем"

ПАСПОРТ ТПКЦ.400220.003 ПС

на	изделие	номер	

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Краснодар (861)203-40-90
Краснорск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3552)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

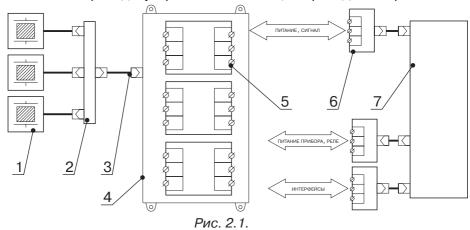
Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта: sey@nt-rt.ru || Сайт: http://syel.nt-rt.ru/

Настоящий паспорт включает в себя сведения, предназначенные для ознакомления обслуживающего персонала с устройством, принципом действия, правилами технической эксплуатации и обслуживания блока контрольно-измерительного 1603 (БКИ) из состава виброаппаратуры СИЭЛ–1600 "Тандем", именуемого в дальнейшем прибор.

Для работы с прибором необходим технический персонал с уровнем подготовки по программе "Устройство и обслуживание контрольно-измерительных приборов и приборов автоматики". Надежность работы и долговечность прибора обеспечивается не только качеством самого изделия, но и правильной его эксплуатацией, поэтому соблюдение всех требований, изложенных в настоящем документе, обязательно.


В процессе изготовления предприятие-разработчик оставляет за собой право замены отдельных деталей и комплектующих изделий без ухудшения технических характеристик прибора.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Прибор 1603 представляет собой многоканальное измерительное устройство, применямое в составе систем контроля параметров вибрации машин и механизмов.
 - Контролируемыми агрегатам могут являться: паровые и газовые турбины, турбокомпрессоры и нагнетатели; центробежные вентиляторы, дутьевые вентиляторы котлоагрегатов и другое промышленное оборудование.
- Прибор предназначен для измерения нормированных сигналов в виде напряжений, пропорциональных виброскорости опор.
 Наизмерительные входы прибора поступают сигналь от соответствующих усилителей согласующих, входящих в состав измерительных каналов.
- 1.3. Рабочие условия применения прибора:

2. ОПИСАНИЕ

2.1. Функциональная схема каналов измерения виброскорости опор по трем взаимно перпендикулярным составляющим приведена на рис. 2.1.

Обозначения:

- пьезоэлектрический вибропреобразователь (ПЭВП);
 В зависимости от типа используемого ПЭВП подробное описание данного изделия приводится в соответствующем руководстве по эксплуатации.
- 2 коробка соединительная 1689-3/1;
- 3 кабель соединительный;
- 4 коробка монтажная для установки УС;
- 5 усилитель согласующий СИЭЛ–1653-020; Подробное описание усилителей согласующих (УС) СИЭЛ–165... изложено в руководстве по эксплуатации: ТПКЦ.427710.001 РЭ.
- 6 соединители клеммные 1688.03;
- 7 прибор 1603.
- 2.2. Принцип измерения виброскорости опор.

Электрический заряд, пропорциональный виброускорению в месте установки ПЭВП, преобразуется с помощью УС в напряжение, пропорциональное виброскорости в стандартной полосе частот и поступает на входы прибора. В блоке 1603 входное напряжение кодируется в цифровую форму и фильтруется.

Виброскорость одной опоры контролируется по трём составляющим: вертикальной: "В", горизонтальной поперечной: "П" и горизонтальной осевой: "О". Контролируемым параметром является среднее квадратическое значение (СКЗ) виброскорости. При достижении сигналом значений предупредительных и аварийных уставок прибор формирует выходной релейный сигнал.

- 2.3. Технические характеристики
- 2.3.1. Диапазон амплитуд измеряемой виброскорости, мм/с.... от 0,5 до 50.
- 2.3.2 Частотный диапазон при измерении виброскорости, Гц от 10 до 1000.
- 2.3.3. Предел допускаемого значения основной относительной погрешности при измерении виброскорости, % ± 6 .
- 2.3.5. Диапазон изменения уставок, % от диапазона измерений.... от 0 до 100.

- 2.3.8. Напряжение питания прибора, переменное, В от 187 до 242.

3.1. УСТРОЙСТВО БЛОКА И ЕГО СОСТАВНЫХ ЧАСТЕЙ

3.1.1. Конструктивно прибор представляет собой электронное устройство, предназначенное для монтажа в щитовую панель. 1603 объединяет в своем составе несколько функционально законченных модулей, установленных в крейт-каркас.

Размер прибора определяется как 3Ux42TE по DIN 41494, внешний вид изделия показан на рисунках 3.1 и 3.2.

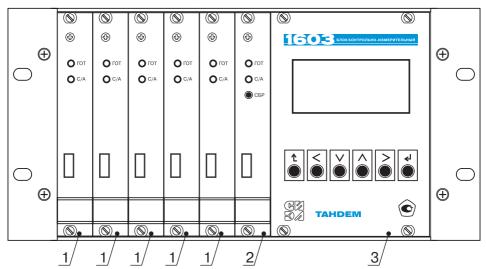


Рис. 3.1. Блок контрольно-измерительный 1603. Вид спереди.

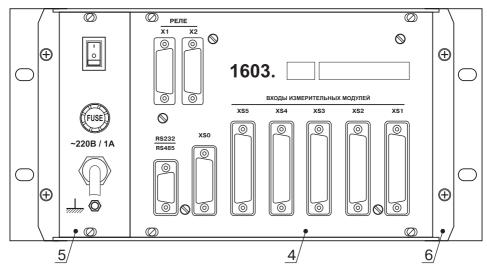


Рис. 3.2. Блок контрольно-измерительный 1603. Вид сзади.

Цифрами обозначены:

- 1 модуль измерительный 1625;
- 2 модуль системный 1612;
- 3 модуль индикатора 1633;
- 4 панель разъемов;
- 5 панель ввода кабеля питания;
- 6 крейт-каркас.
- 3.1.2. На лицевых панелях измерительных модулей 1625 расположены светодиодные индикаторы работоспособности данного модуля (ГОТ), состояния уставок сигнализации и защиты по всем измерительным каналам, подключенным к этому модулю (С/А), а также тестовый разъем. На лицевой панели системного модуля 1612 кроме светодиодиодов ГОТ и С/А, выполняющих аналогичные функции, расположена кнопка перезапуска блока СБР. На передней панели модуля индикатора 1633 расположены символьный ЖК-индикатор:четыре строки по шестнадцать знакомест и шесть кнопок управления.
- 3.1.3. На задней панели блока расположены разъемы DSUB-25 (XS1...XS5) и DSUB-15 (XS0) для подключения первичных преобразователей к измерительным модулям, установленным на позициях 1 5, и к системному модулю позиция 6. Разъемы DSUB-15 (X1, X2) предназначены для подключения контактов выходных реле, а разъем DSUB-9 (RS232/RS485) служит для подключения интерфейсов.
- 3.1.4. На панели ввода кабеля питания находятся: кнопка включения БКИ, держатель предохранителя цепей питания и кабель подключения питающего напряжения.
- 3.1.5. Модули 1625 и 1612 устанавливаются в крейт-каркас по направляющим; лицевые панели модулей крепятся винтами.
 Позиции установки модулей 1625: от 1 до 5; положение системного модуля 1612 фиксировано позиция 6.

3.1.6. Функциональная схема БКИ приведена на рисунке 3.3.

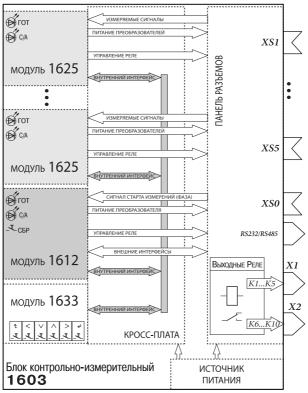


Рис. 3.3. Блок контрольно-измерительный 1603. Схема функциональная.

3.2. Крейт-каркас

3.2.1. Конструктивной основой прибора 1603 является крейт-каркас, служащий для объединения модулей 1625, 1612 и 1633 в единое устройство. Крейт-каркас изготавливается на основе стандартного изделия *Ripac Vario* фирмы *Rittal*.

Схема соединений функциональных узлов крейт-каркаса приведена на рисунке 3.4.

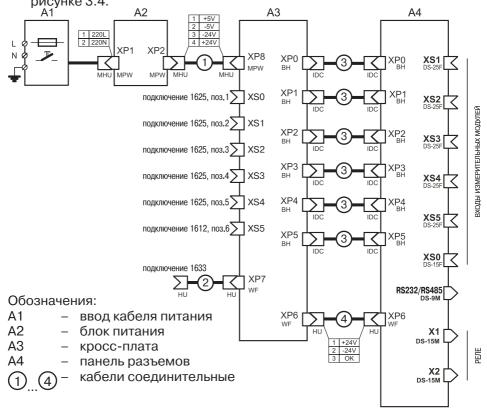


Рис. 3.4. Крейт-каркас. Схема соединений.

- 3.2.2. Электрическое питание прибора осуществляется от сети переменного напряжения 220 В, 50 Гц. На панели ввода кабеля питания (A1) установлены: выключатель блока, защитный предохранитель и сетевой фильтр.
- 3.2.3. Блок питания (A2) служит для выработки рабочих напряжений для работы модулей блока. Постоянное напряжение 5 В (цепи +5V и -5V) используется для питания измерительных и управляющих микропроцессорных узлов модулей. Подключаемые первичные преобразователи и выходные реле прибора питаются постоянным напряжением 24 В (цепи +24V и -24V). Питающее напряжение от блока питания подается на кросс-плату с помощью кабеля 1.
- 3.2.4. Кросс-плата (А3) подключает входные и выходные цепи модулей 1612 и 1625 к внешним разъемам 1603, а также обеспечивает обмен между модулями внутри блока. Электрическое соединение модулей 1625 и 1612 с кросс-платой обеспечивается 64-контактными разъемами; модуль индикатора 1633 подключается с помощью соединительного кабеля 2. Измерительные цепи, цепи питания подключаемых первичных преобразователей и сигналы управления внешними реле подключаются с помощью плоских кабелей 3. Для подключения напряжения питания внешних реле, а также сигнала работоспособности установленных модулей ОК служит кабель 4.
- 3.2.5. На панели разъемов (A4) установлены разъемы подключения к прибору внешних цепей (XSO, XS1...XS5, X1, X2, RS232/RS485), а также выходные реле. Перекидные контакты реле К1...К10 соединены с разъемами X1 и X2 блока. Управление срабатыванием внешних реле осуществляется сигналами от измерительных и системного модулей. Каждый измерительный модуль 1625, установленный на позиции 1 5, может формировать на соответствующем разъеме (J0...J4) шесть сигналов управления реле: A, B, C, D, E, и F. Выходными сигналами системного модуля 1612 (позиция 6) на разъеме J5 являются сигналы: A, B, C, D и ОК.

Алгоритм срабатывания реле K1...K10 определяется изготовленными в процессе настройки блока накруточными соединениями и зависит от проекта измерительной системы (см. Приложение 2).

На рисунке 3.5 показано расположение штыревых контактов для накруточных соединений.

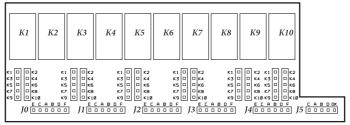
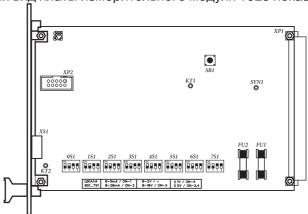


Рис. 3.5. Панель разъемов. Расположение контактов для накруточных соединений.


- 3.3. Модуль измерительный 1625
- 3.3.1. Модуль измерительный 1625 представляет собой аппаратно-программное устройство и служит для обработки сигналов от измерительных преобразователей, подключенных к входам прибора. Конструктивно модуль представляет собой печатную плату двухстороннего монтажа размером 160х100 мм с лицевой панелью 3Uх4TE (по DIN 41494).
- 3.3.2. На плате модуля 1625 расположены: восемь одинаковых входных цепей; микроконтроллер с развитой аналоговой частью, подсистемами памяти и ввода-вывода; формирователи системного и вспомогательного интерфейсов; светодиодные индикаторы состояния; выходные полупроводниковые реле, формирующие сигналы управления внешними реле БКИ: A, B, C, D, E, и F; средства контроля питания подключаемых первичных преобразователей.
- 3.3.3. Программное обеспечение модуля записывается в электрически перепрограммируемую память микроконтроллера при изготовлении модуля. Резидентная программа управляет аналого-цифровым преобразованием входных сигналов, обрабатывает полученные значения, сравнивает их с уставками сигнализации и защиты по установленному при настройке модуля алгоритму и передает измеренные значения в системный модуль по внутреннему интерфейсу.
- 3.3.4. Управление работой модуля в составе БКИ и обмен информацией с системным модулем 1612 осуществляется с помощью последовательных интерфейсов и вспомогательных управляющих сигналов.
- 3.3.5. Технические характеристики модуля 1625.

 - 2. Микроконтроллер:

типС80	51F020;
тактовая частота, МГц2	
размер внутреннего ОЗУ, кбайт	4,25;
размер внутреннего перепрограммируемого ПЗУ, кба	ιйт 64.
001/	00

- 3. Размер внешнего ОЗУ, кбайт 32.
- 4. Системный интерфейс......RS-485, полудуплекс.
- 5. Дополнительный интерфейс UART, уровни TTL, полудуплекс.
- 6. Напряжение питания, В..... постоянное, (5 ± 0.25) .
- 7. Ток потребления, мА, не более...... 100.

3.3.6. Внешний вид платы измерительного модуля 1625 показан на рис. 3.6.

Обозначения:

XP1 – 64-контактный разъем для подключения к кросс-плате,

XP2 – разъем ВН-10 для программирования модуля,

XS1 – контрольный разъем,

SB1 – кнопка сброса модуля,

FU1, FU2 – предохранители (0,25 A) для питания преобразователей,

0S1...7S1 - переключатели диапазонов измеряемых сигналов,

КТ1 – контрольная точка: цифровой общий,
 КТ2 – контрольная точка: аналоговый общий,
 SYN – контрольная точка: порт синхронизации.

Рис. 3.6. Модуль измерительный 1625. Внешний вид.

- 3.4. Модуль системный 1612
- 3.4.1. Модуль системный 1612 представляет собой аппаратно-программное устройствои служит для управления работой прибора 1603. Конструктивно модуль представляет собой печатную плату двухстороннего монтажа размером 160х100 мм с лицевой панелью 3Uх4TE (по DIN 41494).
- 3.4.2. На плате модуля 1612 расположены: микроконтроллер с подсистемой памяти и ввода-вывода; формирователи внутренних интерфейсов; формирователи гальванически изолированных (кроме интерфейса с репитером) внешних интерфейсов; светодиодные индикаторы состояния; выходные полупроводниковые реле, формирующие сигналы управления внешними реле БКИ: А, В, С, D и ОК; средства контроля питания подключаемого первичного преобразователя внешнего сигнала начала измерений.
- 3.4.3. Программное обеспечение модуля записывается в электрически перепрограммируемую память микроконтроллера при изготовлении модуля. Резидентная программа управляет работой модуля и процессами обмена внутри блока и формирование внешних интерфейсов.

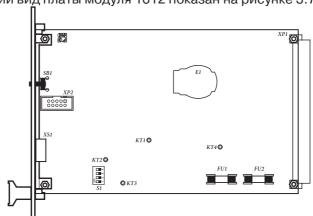
3.4.4. Технические характеристики модуля 1612.

1. Микроконтроллер:

2.

3.

4.


5

типC8051F020;
тактовая частота, МГц22,1184;
размер внутреннего ОЗУ, кбайт4,25;
размер внутреннего перепрограммируемого ПЗУ, кбайт 64.
Размер внешнего ОЗУ, кбайт 32.
Системный интерфейсRS-485, полудуплекс.
Дополнительный интерфейс UART, уровни TTL, полудуплекс.
Внешний интерфейс:
тип RS232 или RS485;
количество1;

максимальная скорость обмена, бод.......57600. 6. Интерфейс с выносным индикатором (репитером):

- 7. Напряжение питания, В..... постоянное, (5 ± 0.25) .

- 3.4.5. Внешний вид платы модуля 1612 показан на рисунке 3.7.

Обозначения:

ХР1 - 64-контактный разъем для подключения к кросс-плате,

хР2 - разъем ВН-10 для программирования модуля,

XS1 - контрольный разъем,

SB1 - кнопка сброса прибора 1603,

FU1, FU2 - предохранители (0,25 A) для питания преобразователя.

- переключатель диапазонов сигнала синхронизации,

КТ1 - контрольная точка: цифровой общий,

КТ2 - контрольная точка: аналоговый общий,

- контрольная точка: общий шины связи с репитером,

КТ4 - контрольная точка: общий внешних интерфейсов.

Рис. 3.7. Модуль системный 1612. Внешний вид.

- 3.5. Модуль индикатора 1633
- 3.5.1. Модуль индикатора 1633 представляет собой аппаратно-программное устройство и служит для вывода информации об измеряемом параметре на ЖК-индикатор и для управления выводом.
- 3.5.2. Модуль 1633 состоит из трех плат: индикатор, кнопки и контроллер. Модуль подключается к кросс-плате с помощью соединительного кабеля. Работой индикатора 1633 управляет системный модуль.
- 3.5.3. Жидкокристаллический индикатор позволяет выводить символьную информацию в четыре строки по шестнадцать символов.
- 3.5.4. Вывод информации об измеренном параметра организован с помощью меню. Назначение кнопок управления выводом следующее:
 - переход на следующий уровень;
 - переход на предыдущий уровень;
 - > переход к следующему параметру (знакоместу);
 - переход к предыдущему параметру (знакоместу);
 - ← подтверждение ввода;
 - **↑** отказ.
- 3.5.5. Внешний вид модуля 1633 показан на рисунке 3.8.

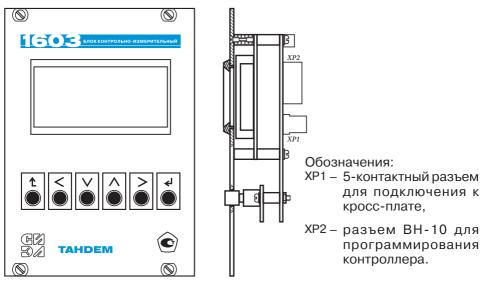


Рис. 3.8. Модуль индикатора. Внешний вид.

- 3.6. Описание протокола обмена по внешнему интерфейсу.
- 3.6.1. Прибор может быть подключён к информационно-измерительной системе верхнего уровня с помощью одного из последовательных интерфейсов RS232 или RS485. В качестве протокола обмена используется промышленный последовательный протокол MODBUS-ASCII.
- 3.6.2. Протокол обмена предназначен для организации связи одного главного узла (ГУ) с одним или более подчинёнными узлами (ПУ); ГУ в определённом порядке опрашивает ПУ и управляет соединением. Прибор всегда является подчинённым узлом.
- 3.6.3. При запросе от ГУ к ПУ возможны следующие ситуации.
 - 1) ПУ принял запрос без коммуникационных ошибок и может нормально его обработать: возвращается нормальный ответ;
 - 2) ПУ не принял запрос: ответ не возвращается, ГУ фиксирует ошибку по таймауту;
 - 3) ПУ принял запрос, но обнаружил коммуникационную ошибку (например несовпадение контрольной суммы или некорректный байт): ответ не возвращается, ГУ фиксирует ошибку по таймауту;
 - 4) ПУ принял запрос без коммуникационных ошибок, но не может выполнить затребованную функцию, ПУ возвращает сообщение об ошибке и её причине.
- 3.6.4. Формат байта протокола MODBUS-ASCII следующий:

Start bit	D0 (LSB)	D1	D2	D3	D4	D5	D6 (MSB)	Stop bit	Stop bit	
-----------	-------------	----	----	----	----	----	-------------	----------	----------	--

Последовательный порт ГУ должен быть настроен в следующий режим:

скорость: биты данных: биты четности: стоп-биты: 57600 бод 7 нет 2

3.6.5. Каждый байт сообщения передаётся как два ASCII-символа, а именно, две шестнадцатеричные цифры.

Например, 123 (DEC) = 7B (HEX) = 3742 (ASCII).

Каждое сообщение передаётся непрерывным потоком.

3.6.6. Формат посылки протокола MODBUS-ASCII следующий:

НАЧАЛО ПОСЫЛКИ	АДРЕС УСТРОЙСТВА	КОД ФУНКЦИИ	БАЙТЫ ДАННЫХ	КОНТРОЛЬНАЯ СУММА	КОНЕЦ ПОСЫЛКИ
1 байт (3Ah)	1 байт	1 байт	N байт	1 байт	2 байта (0D0Ah)
1 символ (" : ")	2 символа	2 символа	Nx2 символов	2 символа	2 символа (CRLF)

3.6.7. Поле АДРЕС УСТРОЙСТВА в ответе всегда повторяет поле АДРЕС УСТРОЙСТВА в запросе. Поле КОД ФУНКЦИИ в запросе сообщает ПУ, какое действие необходимо произвести; поле БАЙТЫ ДАННЫХ содержит информацию, необходимую для выполнения запрошенной функции.

Если ПУ может выполнить требуемую функцию, поле КОД ФУНКЦИИ в ответе повторяет КОД ФУНКЦИИ в запросе; поле БАЙТЫ ДАННЫХ содержит затребованную информацию.

Если имеет место ошибка, поле КОД ФУНКЦИИ в ответе модифицируется: старший бит устанавливается в единицу; поле БАЙТЫ ДАННЫХ содержит причину ошибки.

КОНТРОЛЬНАЯ СУММА вычисляется по всем байтам сообщения, исключая поля НАЧАЛО ПОСЫЛКИ и КОНЕЦПОСЫЛКИ, по алгоритму LRC (Longitudinal Redundancy Check). Байт контрольной суммы LRC вычисляется арифметическим сложением последовательности байтов сообщения, отбрасывая все переносы, далее результат вычитается из FFh (первое дополнение), и к получившемуся значению прибавляется 01h (второе дополнение). Для проверки контрольной суммы арифметически складываются все байты сообщения (включая байт LRC), кроме символов начала и конца посылки. Если результат равен 00h, сообщение передано без коммуникационных ошибок.

3.6.8. В приборе реализована функция Read Holding Registers (код 03h) – чтение из регистра (регистров).

Формат запроса функции Read Holding Registers следующий:

:	АДРЕС УСТР-ВА	03h	НАЧАЛЬНЫЙ АДРЕС РЕГИСТРА	КОЛ-ВО РЕГИСТРОВ	КОНТР-АЯ СУММА	CRLF
1 байт	1 байт	1 байт	2 байта	2 байта	1 байт	2 байта

Формат нормального ответа на функцию Read Holding Registers:

:	АДРЕС УСТР-ВА	03h	СЧЁТЧИК БАЙТ	ДАННЫЕ 1	 ДАННЫЕ N	КОНТР-АЯ СУММА	CRLF
1 байт	1 байт	1 байт	1 байт	2 байта	2 байта	1 байт	2 байта

Поля ДАННЫЕ 1...ДАННЫЕ N содержат запрашиваемые значения регистров.

Поле СЧЁТЧИК БАЙТ содержит число байт в запрашиваемых регистрах (Nx2).

Формат ответа на функцию Read Holding Registers при ошибке:

:	АДРЕС УСТР-ВА	83h	КОД ОШИБКИ	КОНТР-АЯ СУММА	CRLF
1 байт	1 байт	1 байт	1 байт	1 байт	2 байта

- 3.6.9. Список кодов ошибок и причины их возникновения:
 - 1) Illegal Function (код 01h) код функции неизвестен ПУ (некорректное поле КОД ФУНКЦИИ);
 - 2) Illegal Data Address (код 02h) обращение к регистру с несуществующим адресом; попытка чтения из регистра, доступного только для записи; попытка записи в регистр, доступный только для чтения (некорректное поле НАЧАЛЬНЫЙ АДРЕС РЕГИСТРА);
 - 3) Illegal Data Value (код 03h) попытка записи в регистр невозможного значения (например, значение пароля, большее, чем 9999); некорректное поле КОЛ-ВО РЕГИСТРОВ; нулевое значение поля КОЛ-ВО РЕГИСТРОВ; лишние байты в запросе; несоответствие между полями КОЛ-ВО РЕГИСТРОВ, СЧЁТЧИК БАЙТ и последующими полями ДАННЫЕ 1... ДАННЫЕ N:
 - 4) Slave Device Busy (код 06h) при попытке записи в регистр, пользователь находился в меню КОНТРОЛЬ или НАСТРОЙКА.
- 3.6.10. Карта регистров прибора 1603 приведена в приложении 3.

4. МОНТАЖ И ПОДКЛЮЧЕНИЕ

4.1. Для установки прибора в щитовой панели необходимо изготовить отверстия, как показано на рисунке 4.1.

Рис. 4.1. Отверстия в панели для монтажа БКИ 1603.

Не допускается установка прибора в одной панели с источниками электромагнитных помех; панель должна быть электрически соединена с шиной заземления. После установки блок закрепить в панели винтами М6 длиной не менее 20 мм.

4.2. Назначения контактов разъёмов для подключения внешних цепей прибора указаны в таблицах 4.1 – 4.5:

Таблица 4.1 Разъемы XS1...XS5 Измерительные цепи

Конт. Цепь Назначение IN7канал 7, отриц. вход 5 IN6канал 6, отриц. вход IN5канал 5, отриц. вход 7 IN4канал 4, отриц. вход 8 IN3канал 3, отриц. вход 9 IN2канал 2, отриц. вход 10 IN1канал 1, отриц. вход 11 INOканал 0, отриц. вход 12 E+ полож. вывод питания 13 Eотриц. вывод питания 16 IN7+ канал 7. положит. вход 17 IN6+ канал 6, положит. вход 18 IN5+ канал 5, положит. вход 19 IN4+ канал 4. положит. вход 20 IN3+ канал 3, положит. вход 21 IN2+ канал 2, положит. вход 22 IN1+ канал 1. положит, вход 23 IN0+ канал 0, положит. вход GNDR общий измерительный

Таблица 4.2 Разъем XS0: Фазовый сиг-

110071	, , , , , , ,	офсио о репитером			
Конт.	Цепь	Назначение			
2	ZSTB	строб в репитер			
3	ZGND	общий репитера			
6	IN0-	канал 0, отриц. вход			
7	E+	полож. вывод питания			
8	E-	отриц. вывод питания			
9	ZCLK	такт. имп. в репитер			
10	ZDAT	данные в репитер			
13	IN0+	канал 0, положит. вход			
14	GNDR	общий измерительный			

Таблица 4.3

Разъем RS232/RS485 Внешние интерфейсы

Конт.	Цепь	Назначение
2	RxD	RS232, прием
3	TxD	RS232, передача
5	GND	общий
7	Α	RS485, линия A
8	В	RS485, линия В

Таблица 4.4 Разъем X1 Выходы реле 1...5

Таблица 4.5
Разъем X1 Выходы реле 610
выходы реле о то

		выходы роло то
Конт.	Цепь	Назначение
1	K1.HO	реле К1, норм. откр.
2	K1.H3	реле К1, норм. закр.
3	К2.ОБ	реле К2, общий
4	КЗ.НО	реле К3, норм. откр.
5	K3.H3	реле К3, норм. закр.
6	К4.ОБ	реле К4, общий
7	K5.HO	реле К5, норм. откр.
8	K5.H3	реле К5, норм. закр.
9	К1.ОБ	реле К1, общий
10	K2.HO	реле К2, норм. откр.
11	K2.H3	реле К2, норм. закр.
12	К3.ОБ	реле К3, общий
13	K4.HO	реле К4, норм. откр.
14	K4.H3	реле К4, норм. закр.
15	К5.ОБ	реле К5, общий

Выходы реле б г			
Конт.	Цепь	ь Назначение	
1	K6.HO	реле К6, норм. откр.	
2	K6.H3	реле К6, норм. закр.	
3	К7.ОБ	реле К7, общий	
4	K8.HO	реле К8, норм. откр.	
5	K8.H3	реле К8, норм. закр.	
6	К9.ОБ	реле К9, общий	
7	K10.H0	реле К10, норм. откр.	
8	K10.H3	реле К10, норм. закр.	
9	К6.ОБ	реле К6, общий	
10	K7.HO	реле К7, норм. откр.	
11	K7.H3	реле К7, норм. закр.	
12	К8.ОБ	реле К8, общий	
13	K9.HO	реле К9, норм. откр.	
14	K9.H3	реле К9, норм. закр.	
15	К10.0Б реле К10, общий		

4.3. Для подключения внешних цепей в комплект поставки прибора входят соединители клеммные 1688.03... Соединители устанавливаются на DIN-рейку TS35 и соединяются с прибором комплектными кабелями. Назначения контактов соединителей указаны в таблицах 4.6 – 4.8:

Таблица 4.6 Соединитель 1688.03.Т3 Выходы реле

Таблица 4.7 Соединитель 1688.03.Т4 Фазовый сигнал; интерфейс с репитером

Клеммник XT1				
Конт.	Цепь	Цепь Назначение		
1	485A	RS485, линия A		
2	485B	RS485, линия В		
3	SG	Общ.сигнальный		
4	485A	RS485, линия A		
5	485B	RS485, линия В		
6	SG	Общ.сигнальный		

	Разъем ХР1			
Конт. Цепь Назначение		Назначение		
	2	RXD	Прием RS232	
	3	TXD	Передача RS232	
	5	SG	Общ.сигнальный	

Конт.	Цепь	Назначение	
1	IN0+	канал 0, положит. вход	
2	IN0-	канал 0, отриц. вход	
3	E+	полож. вывод питания	
4	E-	отриц. вывод питания	
5 6	GNDR	общий измерительный	
7	RDAT	данные в репитер	
8	RSTB	строб в репитер	
9	RCLK	тактовый имп. в репитер	
10	RGND	общий репитера	

Таблица 4.8 Соединитель 1688.03.Т1 Измерительные цепи

		шориноивные дони		
Конт.	Цепь	Назначение		
1	IN0+	канал 0, положит. вход		
2	IN0-	канал 0, отриц. вход		
3	IN1+	канал 1, положит. вход		
4	IN1-	канал 1, отриц. вход		
5	E+	полож. вывод питания		
6	E-	отриц. вывод питания		
7	GNDR	общий измерительный		
8		оощий измерительный		
9	IN2+	канал 2, положит. вход		
10	IN2-	канал 2, отриц. вход		
11	IN3+	канал 3, положит. вход		
12	IN3-	канал 3, отриц. вход		
13	E+	полож. вывод питания		
14	E-	отриц. вывод питания		
15	GNDR	общий измерительный		
16		оощий измерительный		
17	IN4+	канал 4, положит. вход		
18	IN4-	канал 4, отриц. вход		
19	IN5+	канал 5, положит. вход		
20	IN5-	канал 5, отриц. вход		
21	E+	полож. вывод питания		
22	E-	отриц. вывод питания		
23	GNDR	общий измерительный		
24				
25	IN6+	канал 6, положит. вход		
26	IN6-	канал 6, отриц. вход		
27	IN7+	канал 7, положит. вход		
28	IN7-	канал 7, отриц. вход		
29	E+	полож. вывод питания		
30	E-	отриц. вывод питания		
31	GNDR	общий измерительный		
32	SINDII	оощий иоморитольный		

Таблица 4.9 Соединитель 1688.03.Т2 Выходы реле

		выходы реле	
Конт.	Цепь	Назначение	
1	K1.HO	реле К1(К6), норм. откр.	
2	К1.ОБ	реле К1(К6), общий	
3	K1.H3	реле К1(К6), норм. закр.	
4	К1.ОБ	реле К1(К6), общий	
5	K2.HO	реле К2(К7), норм. откр.	
6	К2.ОБ	реле К2(К7), общий	
7	K2.H3	реле К2(К7), норм. закр.	
8	К2.ОБ	реле К2(К7), общий	
9	КЗ.НО	реле К3(К8), норм. откр.	
10	К3.ОБ	реле К3(К8), общий	
11	K3.H3	реле КЗ(К8), норм. закр.	
12	К3.ОБ	реле К3(К8), общий	
13	K4.HO	реле К4(К9), норм. откр.	
14	К4.ОБ	реле К4(К9), общий	
15	K4.H3	реле К4(К9), норм. закр.	
16	К4.ОБ	реле К4(К9), общий	
17	K5.HO	реле К5(К10), норм. откр.	
18	К5.ОБ	реле К5(К10), общий	
19	K5.H3	реле К5(К10), норм. закр.	
20	К5.ОБ	реле К5(К10), общий	

- 4.4. Подключение внешних цепей к прибору 1603 производиться согласно проекту измерительной системы.
 - Напряжение питания подключается к блоку с помощью неразъемного кабеля.
- 4.5. Перечень контролируемых параметров и количество установленных измерительных модулей 1625 для данной модификации прибора приводится в Приложении 1.
- 4.6. При подключении к прибору усилителей согласующих (УС), входящих в измерительные каналы виброскорости, необходимо использовать схемы подключения, приведенные в РЭ на применяемые усилители (например для УС СИЭЛ-165... ТПКЦ.427710.001 РЭ).

- 5. Инструкция по эксплуатации
- 5.1. К работе с прибором допускаются лица, имеющие необходимые знания и навыки, изучившие принцип действия прибора и прошедшие соответствующие инструктажи и проверки знаний согласно Правил технической эксплуатации электроустановок потребителей (ПТЭЭП).
- 5.2. Ввод в эксплуатацию.
- 5.2.1. Произвести монтаж и подключение первичных преобразователей согласно эксплуатационным документам на эти устройства.
- 5.2.2. Подключить к прибору внешние цепи согласно схеме подключения.
- 5.2.3. Перед включением прибора необходимо проверить: значение питающего напряжения, надежность и правильность подключения блока к заземляющему контуру, правильность подключения первичных преобразователей.
- 5.2.4. Для включения прибора необходимо включить переключатель на задней панели блока. После подачи напряжения питания блок готов к работе по истечении времени выхода на режим.

5.2.5. Во время нормальной работы системы виброконтроля на лицевых

- панелях модулей 1625 и 1612 горят зеленым цветом светодиоды ГОТ и С/А. Правильность процессов измерения и обмена контролируется по миганию светодиодов С/А на лицевых панелях модулей. На ЖК-индикаторе модуля 1633 высвечивается значение выбранного прааметра. Выбор индицируемого параметра и передвижение по меню просмотра осуществляется кнопками V, A, >, <.
- 5.2.6. При достижении одним из входных сигналов 1625 значения уставки предупредительной сигнализации (например 7,1 мм/с для СКЗ виброскорости при контроле турбогенератора), светодиод С/А на лицевой панели этого модуля загорается желтым цветом.
- 5.2.7. При достижении значения уставки аварийной сигнализации (11,2 мм/с) светодиод С/А загорается красным цветом.
 Для системы виброконтроля турбогенератора принят следующий
 - алгоритм срабатывания аварийной уставки: две составляющие виброскорости по одному подшипнику (А1) или две одноименные составляющие соседних подшипников (А2).
 - При нарушениях в цепях питания подключенных преобразователей загорается красным цветом светодиод ГОТ.
- 5.2.8. Проверка функционирования измерительных каналов, а также проверка подключенных цепей сигнализации и защиты может производиться следующими способами:
- 5.2.8.1. Установить ПЭВП из состава измерительного канала виброскорости на стол вибростенда; выбрать значение частоты вибростенда; последовательно задавать значения виброскорости от минимального до значения срабатывания предупредительной и/или аварийной уставок. Измеряемые значения контролировать с помощью ЖК-индикатора модуля 1633.

- 5.2.8.3. Возможно подключение к измерительным входам модулей прибора сигнала от генератора переменного синусоидального напряжения. Последовательно задавать амплитуду входного сигнала до значения сигнала, соответствующему срабатыванию предупредительной и/или аварийной уставок.
- 5.3 Виды и периодичность технического обслуживания.
- 5.3.1. Периодический контроль: проводится не реже чем раз в неделю и предусматривает визуальный осмотр прибора и оценку его показаний.
- 5.3.2. Профилактический осмотр: проводится не реже чем один раз в три месяца и предусматривает проверку и затяжку клеммных соединений прибора, проверку входных и выходных цепей.
- 5.3.3. Внеплановое обслуживание: производится при возникновении неисправностей и включает в себя работы, связанные с заменой прибора на исправный.

6. КОМПЛЕКТ ПОСТАВКИ

Прибор 1603 1 ш	т.
Соединители клеммные 1 комплек	т.
Паспорт 1 ш	т.

7. УПАКОВКА, ТРАНСПОРТИРОВАНИЕ, ХРАНЕНИЕ И УТИЛИЗАЦИЯ

- 7.1. Прибор вместе с паспортом должен быть уложен в мешок из полиэтиленовой пленки; допускается использование других упаковочных материалов, если они не снижают надежность упаковки.
- 7.2. Прибор транспортируют в закрытых транспортных средствах любого вида. Значения влияющих климатических и механических воздействий согласно ГОСТ 22261-94 для группы 5.
- 7.3. Прибор разрешается хранить в упаковке при температуре окружающего воздуха от $-25\,^{\circ}$ C до $+55\,^{\circ}$ C и относительной влажности воздуха до $95\,^{\circ}$ при $25\,^{\circ}$ C.
- 7.4. Перед утилизацией изделия необходимо извлечь металлические и пластмассовые части и утилизировать их в установленном порядке.

8. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 8.1. Изготовитель гарантирует соответствие технических характеристик прибора значениям п.2.5 при правильном соблюдении потребителем правил эксплуатации, транспортирования и хранения.
- 8.2. Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию. В течение гарантийного срока изготовитель производит бесплатный ремонт, если неисправность вызвана ошибками при изготовлении.
- 8.3. В случае возникновения неисправностей прибора необходимо обращаться на предприятие-изготовитель для проведения гарантийного или послегарантийного обслуживания.

9. ПРИЕМКА И ПОВЕРКА

9.1. Прибор 1603 в составе:

Позиция	Модуль	Зав. №
1	1625	
2	1625	
3	1625	
4	1625	
5	1625	
6	1612	

изготовлен и принят в соответствии с обязательными требованиями действующей технической документации и признан годным для эксплуатации.

	эксплуатации.	М.П.	— Начальник ОТК]
9.2.	Поверка Прибор 1603, за дата изготовлен	•	личная подпись]

Дата поверки	Вид поверки	Подпись и клеймо поверителя
	первичная	

ПРИЛОЖЕНИЕ 1: Таблица измерительных каналов прибора 1603

Позиция	17	Измеряемая величина		Шкала
модуль	Канал	название	шкала	сигнала
	IN0	верт. сост. виброскорости подш.1	0 - 50 мм/с	±5 B
	IN1	поперечн.сост. виброскорости подш.1	0 - 50 мм/с	±5 B
1005/1	IN2	осевая сост. виброскорости подш.1	0 - 50 мм/с	±5 B
1625/1	IN3	верт. сост. виброскорости подш.2	0 - 50 мм/с	±5 B
	IN4	поперечн.сост. виброскорости подш.2	0 - 50 мм/с	±5 B
	IN5	осевая сост. виброскорости подш.2	0 - 50 мм/с	±5 B
	IN0	верт. сост. виброскорости подш.3	0 - 50 мм/с	±5 B
	IN1	поперечн.сост. виброскорости подш.3	0 - 50 мм/с	±5 B
1625/2	IN2	осевая сост. виброскорости подш.3	0 - 50 мм/с	±5 B
1023/2	IN3	верт. сост. виброскорости подш.4	0 - 50 мм/с	±5 B
	IN4	поперечн.сост. виброскорости подш.4	0 - 50 мм/с	±5 B
	IN5	осевая сост. виброскорости подш.4	0 - 50 мм/с	±5 B
	IN0	верт. сост. виброскорости подш.5	0 - 50 мм/с	±5 B
	IN1	поперечн.сост. виброскорости подш.5	0 - 50 мм/с	±5 B
1625/3	IN2	осевая сост. виброскорости подш.5	0 - 50 мм/с	±5 B
1023/3	IN3	верт. сост. виброскорости подш.6	0 - 50 мм/с	±5 B
	IN4	поперечн.сост. виброскорости подш.6	0 - 50 мм/с	±5 B
	IN5	осевая сост. виброскорости подш.6	0 - 50 мм/с	±5 B
	IN0	верт. сост. виброскорости подш.7	0 - 50 мм/с	±5 B
	IN1	поперечн.сост. виброскорости подш.7	0 - 50 мм/с	±5 B
1625/4	IN2	осевая сост. виброскорости подш.7	0 - 50 мм/с	±5 B
1023/4	IN3	верт. сост. виброскорости подш.8	0 - 50 мм/с	±5 B
	IN4	поперечн.сост. виброскорости подш.8	0 - 50 мм/с	±5 B
	IN5	осевая сост. виброскорости подш.8	0 - 50 мм/с	±5 B
	IN0	верт. сост. виброскорости подш.9	0 - 50 мм/с	±5 B
	IN1	поперечн.сост. виброскорости подш.9	0 - 50 мм/с	±5 B
1625/5	IN2	осевая сост. виброскорости подш.9	0 - 50 мм/с	±5 B
1625/5	IN3	верт. сост. виброскорости подш.10	0 - 50 мм/с	±5 B
	IN4	поперечн.сост. виброскорости подш.10	0 - 50 мм/с	±5 B
	IN5	осевая сост. виброскорости подш.10	0 - 50 мм/с	±5 B

ПРИЛОЖЕНИЕ 2: Таблица релейных выходов прибора 1603

Реле	Наименование контролируемого параметра	Обозначение	Уставка
K1	предупреждение 1: вибрация подшипников ТГ высокая	ПВ1	4,5 мм/с
K2	предупреждение 2: вибрация подшипников ТГ высокая	ПВ2	7,1 мм/с
КЗ	защита 1: вибрация двух составляющих подшипника ТГ аварийно высокая	AB1	11,2 мм/с
K4	защита 2: вибрация двух составляющих соседних подшипников ТГ аварийно высокая	AB2	11,2 мм/с

Модуль/	Изм.		1	7/п реле	модул:	Я		Соединения
позиция	канал	Α	В	С	D	Е	F	на панели реле
	IN0	ПВ1	ПВ2	AB1				
	IN1	ПВ1	ПВ2	AB1				J0/A - K1
1605/1	IN2	ПВ1	ПВ2	AB1				
1625/1	IN3	ПВ1	ПВ2	AB1				J0/B - K2
	IN4	ПВ1	ПВ2	AB1				J0/C - K3
	IN5	ПВ1	ПВ2	AB1				
	IN0	ПВ1	ПВ2	AB1				
	IN1	ПВ1	ПВ2	AB1				J1/A - K1
1605/0	IN2	ПВ1	ПВ2	AB1				11/D K2
1625/2	IN3	ПВ1	ПВ2	AB1				J1/B - K2
	IN4	ПВ1	ПВ2	AB1				J1/C - K3
	IN5	ПВ1	ПВ2	AB1				·
	IN0	ПВ1	ПВ2	AB1				
	IN1	ПВ1	ПВ2	AB1				J2/A - K1
1625/3	IN2	ПВ1	ПВ2	AB1				J2/B - K2
1023/3	IN3	ПВ1	ПВ2	AB1				
	IN4	ПВ1	ПВ2	AB1				J2/C - K3
	IN5	ПВ1	ПВ2	AB1				
	IN0	ПВ1	ПВ2	AB1				
	IN1	ПВ1	ПВ2	AB1				J3/A - K1
1605/4	IN2	ПВ1	ПВ2	AB1				12/0 1/2
1625/4	IN3	ПВ1	ПВ2	AB1				J3/B - K2
	IN4	ПВ1	ПВ2	AB1				J3/C - K3
	IN5	ПВ1	ПВ2	AB1				, i
	IN0	ПВ1	ПВ2					
	IN1	ПВ1	ПВ2					<u> </u>
1625/5	IN2	ПВ1	ПВ2					J4/A - K1
1625/5	IN3	ПВ1	ПВ2					J4/B - K2
	IN4	ПВ1	ПВ2					3 1/ 5 112
	IN5	ПВ1	ПВ2					
1612/6		AB2						J5/B - K4

ПРИЛОЖЕНИЕ 3: Карта регистров прибора 1603.

Номер	Старший	Младший				
регистра	байт	байт	Адрес	Канал	Модуль	
1	00h	ОШИБКИ МОДУЛЯ	00h			
2	00h	УСТАВКИ КАНАЛА	01h		-	
3			02h	0		
4	C	K3	03h			
5	00h	УСТАВКИ КАНАЛА	04h			
6			05h	1		
7	C	K3	06h			
8	00h	УСТАВКИ КАНАЛА	07h			
9			08h	2	модуль	
10	C	cK3	09h		1625,	
11	OOh	УСТАВКИ КАНАЛА	0Ah		позиция 1	
12			0Bh	3		
13		K3	0Ch			
14	00h	УСТАВКИ КАНАЛА	0Dh		1	
15		1/0	0Eh	4		
16		K3	0Fh			
17	00h	УСТАВКИ КАНАЛА	10h			
18		N/O	11h	5		
19		K3	12h			
20	00h	ОШИБКИ МОДУЛЯ	13h			
21	00h	УСТАВКИ КАНАЛА	14h]	
22		N/O	15h	0		
23		K3	16h	1	j	
24	00h	УСТАВКИ КАНАЛА	17h			
25		:K3	18h	1		
26			19h			
27	00h	УСТАВКИ КАНАЛА	1Ah			
28	_	:K3	1Bh	2	модуль	
29			1Ch		1625,	
30	00h	УСТАВКИ КАНАЛА	1Dh		позиция 2	
31	_	:K3	1Eh	3		
32		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1Fh			
33	00h	УСТАВКИ КАНАЛА	20h			
34	_	:K3	21h	4		
35			22h			
36	00h	УСТАВКИ КАНАЛА	23h			
37	_	:K3	24h	5		
38			25h			

Номер регистра	Старший байт	Младший байт	Адрес	Канал	Модуль
39	00h	ОШИБКИ МОДУЛЯ	26h		
40	00h	УСТАВКИ КАНАЛА	27h		1
41			28h	0	
42	CI	⟨3	29h		
43	00h	УСТАВКИ КАНАЛА	2Ah		1
44			2Bh	1	
45	CI	⟨3	2Ch		
46	00h	УСТАВКИ КАНАЛА	2Dh		
47			2Eh	2	модуль
48	CI	< 3	2Fh		1625,
49	00h	УСТАВКИ КАНАЛА	30h		позиция 3
50		10	31h	3	
51	Ci	⟨3	32h		
52	00h	УСТАВКИ КАНАЛА	33h		
53	CK3		34h	4	
54			35h		
55	00h	УСТАВКИ КАНАЛА	36h		
56	CI	⟨3	37h	5	
57		10	38h		
58	00h	ОШИБКИ МОДУЛЯ	39h]
59	00h	УСТАВКИ КАНАЛА	3Ah		
60	CI	K3	3Bh	0	
61			3Ch		
62	00h	УСТАВКИ КАНАЛА	3Dh		
63	CI	⟨3	3Eh	1	
64			3Fh		
65	00h	УСТАВКИ КАНАЛА	40h		
66	CI	<3	41h	2	модуль
67			42h		1625,
68	00h	УСТАВКИ КАНАЛА	43h		позиция 4
69	CI	< 3	44h	3	
70			45h		
71	00h	УСТАВКИ КАНАЛА	46h		
72	CI	<3	47h	4	
73			48h		-
74	00h	УСТАВКИ КАНАЛА	49h	_	
75	CI	< 3	4Ah	5	
76			4Bh		

Номер регистра	Старший байт	Младший байт	Адрес	Канал	Модуль
77	00h	ОШИБКИ МОДУЛЯ	4Ch		
78	00h	УСТАВКИ КАНАЛА	4Dh		
79	CI	/2	4Eh	0	
80	Ci	CK3			
81	00h	УСТАВКИ КАНАЛА	50h		
82		⟨3	51h	1	модуль 1625, позиция 5
83	Ci	\3	52h		
84	00h	УСТАВКИ КАНАЛА	53h		
85	CI	< 3	54h	_ 2	
86	Ci	10	55h		
87	00h	УСТАВКИ КАНАЛА	56h		
88	CI	K3	57h	3	
89	Ci	\3	58h		
90	00h	УСТАВКИ КАНАЛА	59h		
91	CI	5Ah	4		
92	Ci	\3	5Bh		
93	00h	УСТАВКИ КАНАЛА	5Ch		
94	CI	(3	5Dh	5	
95	Ci	\o	5Eh		
96	ЗАЩИТА	ОШИБКА КОНТРОЛЛЕРА	5Fh		модуль 1612, позиция 6

Для данных, занимающих два регистра, старшим байтом является старший байт первого регистра, младшим байтом является младший байт второго регистра.

Поле ОШИБКИ МОДУЛЯ:

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	0	0	0	0	0	0	ПИТ

ПИТ ошибка питания первичных преобразователей.

Поле УСТАВКИ КАНАЛА:

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	0	0	0	0	AB1	0	ПР

АВ1 аварийная уставка;

ПР предупредительная уставка.

Поле ЗАЩИТА:

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	0	0	0	0	0	0	AB2

AB2 авария по двум одноименным составляющим соседних подшипников.

Поле ОШИБКА КОНТРОЛЛЕРА:

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	0	0	0	0	0	0	ПИТ

ПИТ

ошибка питания первичных преобразователей.

Поле СКЗ: среднее квадратическое значение виброскорости (*)

(*) формат IEEE-754.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Краснодро (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогор

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-5-6 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта: sey@nt-rt.ru || Сайт: http://syel.nt-rt.ru/