

ИЗМЕРИТЕЛЬНОЕ РЕЛЕ ОТНОСИТЕЛЬНОГО РАСШИРЕНИЯ РОТОРА 1605.04

из состава виброаппаратуры СИЭЛ-1600 "Тандем"

заводской номер _____

ПАСПОРТ ТПКЦ.400220.005.04 ПС

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астарань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-5-6

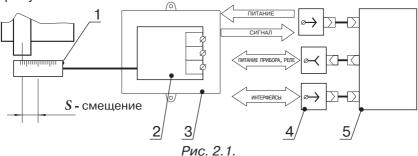
Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

Эл. почта: sey@nt-rt.ru || Сайт: http://syel.nt-rt.ru/

Настоящий паспорт включает в себя сведения, предназначенные для ознакомления обслуживающего персонала с устройством, принципом действия, правилами технической эксплуатации и обслуживания измерительного реле относительного расширения ротора (ОРР) 1605.04 из состава виброаппаратуры СИЭЛ–1600 "Тандем". Измерительное реле представляет собой микропроцессорное устройство, именуемое в дальнейшем прибор.

Для работы с прибором необходим технический персонал с уровнем подготовки по программе "Устройство и обслуживание контрольно-измерительных приборов и приборов автоматики". Надежность работы и долговечность прибора обеспечиваются не только качеством самого изделия, но и правильной его эксплуатацией, поэтому соблюдение всех требований, изложенных в настоящем документе, обязательно.


В процессе изготовления предприятие-разработчик оставляет за собой право замены отдельных деталей и комплектующих изделий без ухудшения технических характеристик прибора.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Прибор 1605.04 предназначен для измерения и контроля значения смещения вращающихся частей машин и механизмов относительно неподвижных опор.
- 1.2. Областью применения прибора являются системы непрерывного контроля состояния машин и механизмов в ходе их эксплуатации.
- 1.3. Рабочие условия применения прибора:

2. ОПИСАНИЕ

2.1. Функциональная схема измерительного канала ОРР приведена на рисунке 2.1.

Обозначения:

- 1 датчик ДВТ40... (производство НПП "Вибробит");
- преобразователь ИП42 (производство НПП "Вибробит");
 Подробное описание датчика и преобразователя изложено в руководстве по эксплуатации:
 Аппаратура "ВИБРОБИТ 100" 9.100 РЭ.
- 3 коробка монтажная для установки преобразователя;
- 4 соединители клеммные 1688.05... (по требованию Заказчика);
- 5 прибор 1605.04.

2.2. Принцип измерения

Прибор 1605.04 обрабатывает входной электрический сигнал в форме тока в диапазоне от 4 до 20 мА, пропорциональный мгновенному значению смещения измерительного пояска ротора контролируемого механизма относительно оси датчика (смещение *S*) и вычисляет значение относительного расширения ротора для индикации и контроля.

- 2.3. Технические характеристики.
- 2.3.1. Диапазон измерения смещения, мм от 0 до 10.
- 2.3.2. Предел допускаемого значения основной относительной погрешности при измерении смещения, % ±10.
- 2.3.3. Выходные релейные сигналы:

тип контакта релетрехпол	юсный, переключающий
количество	3
максимальное рабочее переменное наг	ряжение, В 250
максимальный рабочий ток, А	1,5
максимальная коммутируемая мощност	гь, ВА 25

- 2.3.7. Напряжение питания, постоянное, В от 18 до 32.

3. УСТРОЙСТВО И РАБОТА ПРИБОРА

3.1. Устройство

- 3.1.1. Конструктивно прибор выполнен в стандартном пластмассовом корпусе, предназначенном для монтажа в щитовую панель. Внутри корпуса расположены плата ввода-вывода и блок контроллера. Блок контроллера включает в себя плату с символьным ЖК-индикатором (2х16 знакомест) и плату контроллера с кнопками управления и светодиодами состояния. Плата ввода-вывода и блок контроллера соединены между собой плоским кабелем. На лицевой панели прибора расположены: шесть кнопок управления, обозначенных символами ♠, <, ∨, ∧, >, ← ; три светодиода состояния И (Исправность), С (Сигнализация) и А (Авария); ЖК-индикатор. На задней панели находятся разъемы типа D-SUB для подключения внешних цепей.
 - Габаритные размеры прибора приведены в Приложении 1.
- 3.1.2. Функционально прибор является законченным аппаратно-программным комплексом. Работой устройства управляет микроконтроллер, расположенный на плате контроллера. Микроконтроллер объединяет на одном кристалле высокопроизводительное микропроцессорное ядро и подсистему памяти, аналоговую часть, универсальный асинхронный приемо-передатчик (UART) и порты ввода-вывода. Резидентное программное обеспечение записывается в электрически перепрограммируемую память микроконтроллера при изготовлении прибора.
- 3.1.3. С помощью портов ввода-вывода микроконтроллер осуществляет: вывод информации на ЖК-индикатор; управление светодиодами состояния и выходными реле; анализ нажатия кнопок; выбор интерфейса. UART микроконтроллера обеспечивает обмен по гальванически изолированным интерфейсам RS232 или RS485. ЦАП микроконтроллера управляет гальванически изолированным формирователем выходного тока.
- 3.1.4. Измеряемый сигнал масштабируется во входных цепях, расположенных на плате ввода-вывода, и преобразуется в цифровой сигнал в АЦП микроконтроллера. Источники напряжений, необходимых для работы всех функциональных узлов прибора и для питания подключаемого ПЛП, находятся на плате ввода-вывода.

3.2. Работа

3.2.1. Во время нормальной работы прибора производится постоянное измерение смещения и расчет значения ОРР. При исправном состоянии измерительного канала и значении смещения в допустимых пределах, на лицевой панели прибора горит зелёный светодиод И и соответствующее ему выходное реле И находится под питанием.

Состояние неисправности измерительного канала сопровождается следующими диагностическими сообщениями:

ОТН. РАСШИРЕНИЕ отказ питания

отказ внутреннего источника питания ОТН.РАСШИРЕНИЕ обрыв петли

оборвана цепь входной токовой петли

ОТН.РАСШИРЕНИЕ вых.за диапазон

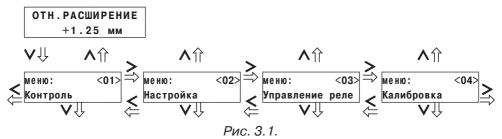
выход смещения за допустимые пределы

3.2.2. Значение OPP (ΔS) расчитывается с использованием начального смещения (S_{α}), принимаемого за нулевое расширение.

Положительное направление OPP может быть выбрано как для случая увеличения смещения, так и для случая уменьшения смещения относительно S_{α} .

При превышении значением OPP предупредительных и аварийных уставок происходит включение выходных реле C и A; соответствующие светодиоды загораются желтым и красным цветом.

3.2.3. После измерения смещения и расчета значения расширения прибор формирует выходной сигнал в форме тока, пропорционального OPP:


$$I_{Bb/X}$$
 [MA] = 12,0 + 1,6 [MA/MM] $\cdot \Delta S$ [MM] ,

При неисправном состоянии измерительного канала, а также во время ввода параметров с помощью кнопок управления (режимы настройки и калибровки) измерение смещения и расчет OPP не производятся. Значение выходного тока при неисправном измерительном канале:

$$I_{RMX} = 1.0 \text{ MA}.$$

- 3.3. Управление работой прибора.
- 3.3.1. Управление работой прибора, а также контроль и настройка параметров всего измерительного канала осуществляется с помощью шести нефиксируемых кнопок, расположенных на передней панели прибора.
- 3.3.2. Вся информация выводится на ЖК-индикатор в виде экранов и организована в виде меню. Смена экранов осуществляется кнопками навигации:
 - V переход на следующий уровень (меню);
 - лереход на предыдущий уровень (меню);
 - > переход к следующему параметру;
 - переход к предыдущему параметру.

Структура главного меню прибора приведена на рисунке 3.1.

3.3.3. В меню **КОНТРОЛЬ** пользователь имеет возможность контролировать значения всех параметров настройки измерительного канала. На рисунке 3.2 показана последовательность смены экранов при перемещении в меню **КОНТРОЛЬ**.

<01> номер измерительного канала контроль: Канал **>**∜ **<**☆ контроль: <02> значение смещения датчика относительно измери-Смещение 6.19 мм тельного пояска **>**∜ <03> направление изменения смещения, принимаемое контроль: +OPP смещение**↑** за положительное расширение <☆ <04> значение смещения, принимаемое за нулевое контроль: "0" 5.00 мм расширение **>**₩ <05> контроль: аварийная уставка при положительном расширении AB+ +3.70 мм (реле А) >∜ < 06> предупредительная уставка при положительном контроль: +2.50 мм расширении (реле С) ПР+ **<**☆ **>**₹৮ < 0.7> аварийная уставка при отрицательном расширении контроль: $-3.70~{\rm MM}$ AB-(реле А) <☆ **>**∜ < 80> предупредительная уставка при отрицательном контроль: ПР--2.50 мм расширении (реле С) <☆ **>**₩ время задержки на срабатывание реле С и А <09> контроль: 1 c Время реле **>**₩ контроль: <10> тип интерфейса Интерфейс RS232 **>**∜ адрес устройства <11> контроль: Адрес 000 <u>> ₹</u>₽ <☆ версия установленного программного обеспеконтроль: <12> Вер.ПО 16050401 чения Рис. 3.2.

При отсутствии нажатия кнопок происходит автоматический возврат из любого экрана в режим индикации OPP; исключением является режим контроля смещения, выход из которого осуществляется нажатием любой из кнопок навигации.

3.3.4. В меню **НАСТРОЙКА** производится изменение параметров измерительного канала; для перехода в режим настройки необходимо ввести пароль как показано на рисунке 3.3.

Увеличение и уменьшение на единицу каждой цифры и переход от одного знака к другому производится с помощью кнопок навигации; ввод подтверждается кнопкой \blacktriangleleft , отказ от ввода - кнопкой \spadesuit .

3.3.5. На рисунке 3.4 показана последовательность индикации параметров настройки прибора и возможные значения вводимых параметров.

Рис. 3.4.

Для перехода в режим ввода цифрового значения выбранного параметра необходимо нажать кнопку ввода: **◄** .

Увеличение и уменьшение на единицу каждой цифры и переход от одного знака к другому производится с помощью кнопок навигации; ввод подтверждается кнопкой

↓ , отказ от ввода – кнопкой

.

3.3.6. При вводе значения смещения, принимаемого за нулевое расширение (S_o), а также при вводе значений предупредительных и аварийных уставок действуют следующие ограничения:

	2,0 MM ≤ S_0 ≤ 8,0 MM	
если положительным	$ AB+ \le (10 - S_0) \text{ MM}$	ПР+ < AB+
расширением принято увеличение смещения	$\left AB - \right \le (S_o - 0) \text{ MM}$	ПР- < AB-
если положительным расширением принято	$ AB+ \le (S_0 - 0) \text{ MM}$	ПР+ < AB+
уменьшение смещения	$ AB- \le (10 - S_0) \text{ MM}$	ПР- < AB-

- 3.3.7. Экран <08> ВРЕМЯ РЕЛЕ меню **НАСТРОЙКА** служит для ввода значения задержки на срабатывания выходных реле С и А: введенное значение одинаково для обоих реле.
- 3.3.8. После ввода параметров настройки запрашивается подтверждение их сохранения в энергонезависимой памяти прибора. Последовательность нажатий кнопок для сохранения в энергонезависимой памяти прибора введенных значений параметров при выходе из меню **НАСТРОЙКА** показана на рисунке 3.5:

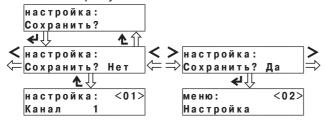


Рис. 3.5.

Передзаписью новых значений параметров настройки прибора осуществляется их проверка на допустимость с выводом диагностических сообщений и возвратом в процедуру ввода ошибочного параметра:

	индикация при ошибке	окно возврата
если положительным расширением принято	настройка: "0"+AB+ > 10 мм!	настройка АВ+
увеличение смещения	настройка: "О"-АВ- < О мм!	настройка АВ-
если положительным	настройка:	настройка АВ+
расширением принято	"0"-AB+ < 0 mm!	пастроика дв
уменьшение смещения	настройка: "0"+AB- > 10 мм!	настройка АВ–
в обоих случаях	настройка: ПР+ > АВ+ !	настройка ПР+
	настройка: ПР— < АВ— !	настройка ПР-
	•	

3.3.9. Меню **УПРАВЛЕНИЕ РЕЛЕ** служит для управления срабатыванием выходных реле С и А: таким образом осуществляется проверка подключённых к прибору внешних цепей сигнализации и защиты.

Для перехода в режим управления реле необходимо ввести пароль как показано на рисунке 3.3.

Последовательность смены экранов для выбора реле и управления их срабатыванием показана на рисунке 3.6.

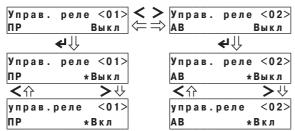


Рис. 3.6.

Переход от одного состояния реле к другому производится с помощью кнопок навигации; ввод подтверждается кнопкой \blacktriangleleft , отказ от ввода кнопкой \blacktriangle .

3.3.10. Меню **КАЛИБРОВКА** служит для автоматического расчета коэффициента передачи смещения при калибровке измерительного канала.

Для перехода в режим калибровки необходимо ввести **собственный пароль**, аналогично тому, как показано на рисунке 3.3.

На рисунке 3.7 показана последовательность смены экранов при перемещении в меню **КАЛИБРОВКА**.

ввод значения смещения, соответствующего первой контрольной точке;

ввод значения смещения, соответствующего второй контрольной точке;

ввод значения смещения, соответствующего третьей контрольной точке;

возврат к значению коэффициента преобразования смещения, установленного на предприятии-изготовителе.

Рис. 3.7.

- 3.4. Описание протокола обмена по внешнему интерфейсу.
- 3.4.1. Прибор может быть подключён к информационно-измерительной системе верхнего уровня с помощью одного из последовательных интерфейсов RS232 или RS485. В качестве протокола обмена используется промышленный последовательный протокол MODBUS-ASCII.
- 3.4.2. Протокол обмена предназначен для организации связи одного главного узла (ГУ) с одним или более подчинёнными узлами (ПУ); ГУ в определённом порядке опрашивает ПУ и управляет соединением. Прибор всегда является подчинённым узлом.
- 3.4.3. При запросе от ГУ к ПУ возможны следующие ситуации:
 - ПУ принял запрос без коммуникационных ошибок и может нормально его обработать: возвращается нормальный ответ;
 - ПУ не принял запрос: ответ не возвращается, ГУ фиксирует ошибку по таймауту;
 - ПУ принял запрос, но обнаружил коммуникационную ошибку (например несовпадение контрольной суммы или некорректный байт); ответ не возвращается, ГУ фиксирует ошибку по таймауту;
 - ПУ принял запрос без коммуникационных ошибок, но не может выполнить затребованную функцию, ПУ возвращает сообщение об ошибке и её причине.
- 3.4.4. Формат байта протокола MODBUS-ASCII следующий:

Start bit	D0 (LSB)	D1	D2	D3	D4	D5	D6 (MSB)	Stop bit	Stop bit	
-----------	-------------	----	----	----	----	----	-------------	----------	----------	--

Последовательный порт ГУ должен быть настроен в следующий режим:

 скорость:
 биты данных:
 бит четности:
 стоп-биты:

 57600 бод
 7
 нет
 2

3.4.5. Каждый байт сообщения передаётся как два ASCII-символа, а именно, две шестнадцатеричные цифры.

Например, 123 (DEC) = 7В (HEX) = 3742 (ASCII).

Каждое сообщение передаётся непрерывным потоком.

3.4.6. Формат посылки протокола MODBUS-ASCII следующий:

НАЧАЛО ПОСЫЛКИ	АДРЕС УСТРОЙСТВА	КОД ФУНКЦИИ	БАЙТЫ ДАННЫХ	КОНТРОЛЬНАЯ СУММА	КОНЕЦ ПОСЫЛКИ
1 байт (3A h)	1 байт	1 байт	N байт	1 байт	2 байта (0D0A h)
1 символ (":")	2 символа	2 символа	Nx2 символов	2 символа	2 символа (CRLF)

3.4.7. Поле адрес устройства в ответе всегда повторяет поле адрес устройства в запросе. Поле код функции в запросе сообщает ПУ, какое действие необходимо произвести; поле байты данных содержит информацию, необходимую для выполнения запрошенной функции.

Если ПУ может выполнить требуемую функцию, поле код функции в ответе повторяет код функции в запросе; поле байты данных содержит затребованную информацию.

Если имеет место ошибка, поле код функции в ответе модифицируется: старший бит устанавливается в единицу; поле байты данных содержит причину ошибки.

контрольная сумма вычисляется по всем байтам сообщения, исключая поля начало посылки и конец посылки, по алгоритму LRC (Longitudinal Redundancy Check). Байт контрольной суммы LRC вычисляется арифметическим сложением последовательности байтов сообщения, отбрасывая все переносы, далее результат вычитается из FFh (первое дополнение), и к получившемуся значению прибавляется 01h (второе дополнение).

Для проверки контрольной суммы арифметически складываются все байты сообщения (включая байт LRC), кроме символов начала и конца посылки. Если результат равен 00h, сообщение передано без коммуникационных ошибок.

3.4.8. В приборе реализована функция Read Holding Registers (код 03h) – чтение из регистра (регистров).

Формат запроса функции Read Holding Registers следующий:

:	АДРЕС УСТРОЙСТВА	03h	НАЧАЛЬНЫЙ АДРЕС РЕГИСТРА	КОЛИЧЕСТВО РЕГИСТРОВ	КОНТРОЛЬНАЯ СУММА	CRLF
1 байт	1 байт	1 байт	2 байта	2 байта	1 байт	2 байта

Формат нормального ответа на функцию Read Holding Registers:

:	АДРЕС УСТРОЙСТВА	03h	СЧЁТЧИК БАЙТ	ДАННЫЕ 1	 ДАННЫЕ N	КОНТРОЛЬНАЯ СУММА	CRLF
1 байт	1 байт	1 байт	1 байт	2 байта	2 байта	1 байт	2 байта

Поля данные $1\dots$ данные N содержат запрашиваемые значения регистров. Поле счётчик байт содержит число байт в запрашиваемых регистрах (Nx2).

Формат ответа на функцию Read Holding Registers при ошибке:

:	АДРЕС УСТРОЙСТВА	83h	КОД ОШИБКИ	КОНТРОЛЬНАЯ СУММА	CRLF
1 байт	1 байт	1 байт	1 байт	1 байт	2 байта

- 3.4.9. Список кодов ошибок и причины их возникновения:
 - Illegal Function (код 01h) код функции неизвестен ПУ (некорректное поле код функции);
 - Illegal Data Address (код 02h) обращение к регистру с несуществующим адресом (некорректное поле начальный адрес регистра);
 - Illegal Data Value (код 03h) некорректное поле кол-во регистров; нулевое значение поля кол-во регистров; лишние байты в запросе; несоответствие между полями кол-во регистров, счётчик байт и последующими полями данные 1...данные N;

3.4.10. Карта регистров прибора:

	Старший байт	Младший байт	Адрес	Доступ
Регистр 1	СТАТУС	УСТАВКИ	00h	чтение
Регистр 2	CMEII	СМЕЩЕНИЕ		чтение
Регистр 3	CIVIELL	ДЕПИІ Е	02h	чтение
Регистр 4	DACILII	1РЕНИЕ	03h	чтение
Регистр 5	РАСШИ	ІРЕПИЕ	04h	чтение
Регистр 6	КАНАЛ	ЗНАК	05h	чтение
Регистр 7	HVITEDOE DA	CHIMPEHME	06h	чтение
Регистр 8	ПУЛЕВОЕ РА	/ЛЕВОЕ РАСШИРЕНИЕ		чтение
Регистр 9	٨٥	3+	08h	чтение
Регистр 10	At	⊃ ⊤	09h	чтение
Регистр 11	П	D+	0Ah	чтение
Регистр 12	111		0Bh	чтение
Регистр 13	٨٥	3–	0Ch	чтение
Регистр 14	At	5-	0Dh	чтение
Регистр 15			0Eh	чтение
Регистр 16		ПР-		чтение
Регистр 17	PED	СИЯ	10h	чтение
Регистр 18	DEP	Сил	11h	чтение

Для данных, занимающих два регистра, старшим байтом является старший байт первого регистра, младшим байтом является младший байт второго регистра.

Поле СТАТУС показывает состояние измерительного канала:

Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
НАСТРОЙКА	0	0	0	0	ПИТАНИЕ	ОБРЫВ ЦЕПИ	ВЫХОД ЗА ДИАПАЗОН

НАСТРОЙКА пользователь находится в меню НАСТРОЙКА; ПИТАНИЕ отказ питания первичных преобразователей; ОБРЫВ ЦЕПИ значение смещения меньше или равно –1 мм; выход ЗА ДИАПАЗОН значение зазора от –1 до 0 мм или больше 10 мм.

Поле УСТАВКИ показывает состояния предупредительных и аварийных уставок измерительного канала:

,							
Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	AB-	0	ПР-	0	AB+	0	ПР+

АВ- аварийная уставка при отрицательном ОРР;

ПР- предупредительная уставка при отрицательном ОРР;

АВ+ аварийная уставка при положительном ОРР;

ПР+ предупредительная уставка при положительном ОРР.

Поле СМЕЩЕНИЕ содержит значение измеряемого смещения, формат IEEE-754.

Поле РАСШИРЕНИЕ содержит значение ОРР, формат IEEE-754.

Поле КАНАЛ содержит номер текущего измерительного канала.

Поле ЗНАК: 0 - положительному расширению соответствует увеличение смещения; 1 - положительному расширению соответствует уменьшение смещения.

Поле НУЛЕВОЕ РАСШИРЕНИЕ содержит значение смещения, принимаемое за нулевое расширение, формат IEEE-754.

Поле AB+ содержит значение аварийной уставки при положительном расширении, формат IEEE-754.

Поле ПР+ содержит значение предупредительной уставки при положительном расширении, формат IEEE-754.

Поле AB – содержит значение аварийной уставки при отрицательном расширении, формат IEEE – 754.

Поле ПР – содержит значение предупредительной уставки при отрицательном расширении, формат IEEE – 754.

Поле ВЕРСИЯ содержит обозначение версии ПО.

4. МОНТАЖ И ПОДКЛЮЧЕНИЕ

4.1. Для установки прибора необходимо изготовить отверстие в панели, как показано на рис. 4.1.

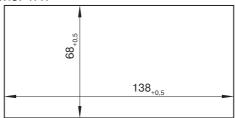


Рис. 4.1.

Не допускается установка прибора в одной панели с источниками электромагнитных помех; панель должна быть электрически соединена с шиной заземления.

- 4.2. После размещения прибора в отверстии, установить крепёжные детали на боковых панелях корпуса и зафиксировать прибор затяжкой винтов.
- 4.3. При монтаже и подключении первичных преобразователей руководствоваться требованиями, изложенными в документе Аппаратура "ВИБРОБИТ 100" 9.100 РЭ.
- 4.4. Назначения контактов разъёмов прибора для подключения внешних цепей следующие:

Разъем XP1 Питание/Реле

Цепь	Назначение			
ПИТ1	Питонио приборо			
ПИТ2	Питание прибора			
А-Общ	Реле А, общий			
A-H3	Реле А, НЗ			
И-Н3	Реле И, НЗ			
С-Общ	Реле C, общий Реле C, H3			
C-H3				
ПИТ1				
ПИТ2	Питание прибора			
A-HO	Реле А, НО			
И-Общ	Реле И, общий			
И-НО	Реле И, НО			
C-HO	Реле С, НО			
	ПИТ1 ПИТ2 А-Общ А-Н3 И-Н3 С-Общ С-Н3 ПИТ1 ПИТ2 А-НО И-Общ И-НО			

Разъем XS1 Интерфейсы

Конт.	Цепь	Назначение	
1	RDAT	Данные в репитер	
2	RXD	Прием RS232	
3	TXD	Передача RS232	
4	RSTB	Строб в репитер	
5	SG	Общ.сигнальный	
6	RCLK	Такт. в репитер	
7	485A	RS485, линия A	
8	485B	RS485, линия В	
9	RGND	Общий репитера	

Разъем XS2 Измерительные цепи

Конт.	Цепь	Назначение	
1	ВХ4-	Измерительный	
2	BX4+	канал 4	
3	ВХЗ-	Измерительный	
4	BX3+	канал 3	
5	BX2-	Измерительный	
6	BX2+	канал 2	
7	BX1-	Измерительный	
8	BX1+	канал 1	
9	-24B	Питание подключ.	
10	+24B	преобразователей	
11	ОбщИ	Общ. измерительн.	
14	TB+	Токовый выход +	
15	TB-	Токовый выход –	

4.5. По согласованию с заказчиком в комплект поставки прибора могут входить соединители клеммные 1688.05..., предназначенные для подключения внешних цепей. Соединители устанавливаются на DIN-рейку TS35 и подключаются к прибору комплектными кабелями. Назначения контактов соединителей следующее:

Соединитель 1688.05.Т2 Питание/Реле

1 11 11 13 11 13 11 13 11			
Конт.	Цепь	Назначение	
1	ПИТ1		
2	ПИТ2	Питание	
3	ПИТ1	прибора	
4	ПИТ2		
5	C-HO	Реле С, НО	
6	С-Общ	Реле С, общий	
7	C-H3	Реле С, НЗ	
8	С-Общ	Реле С, общий	
9	A-HO	Реле А, НО	
10	А-Общ	Реле А, общий	
11	A-H3	Реле А, НЗ	
12	А-Общ	Реле А, общий	
13	И-НО	Реле И, НО	
14	И-Общ	Реле И, общий	
15	И-Н3	Реле И, НЗ	
16	И-Общ	Реле И, общий	

Соединитель 1688.05.ТЗ Интерфейсы

Клеммник XT1			
Конт.	Цепь	Назначение	
1	485A	RS485, линия A	
2	485B	RS485, линия В	
3	SG	Общ.сигнальный	
4	485A	RS485, линия A	
5	485B	RS485, линия В	
6	SG	Общ.сигнальный	
Клем	Клеммник XT2		
Конт.	Конт. Цепь Назначени		
1	RDAT	Данные в репите	
2	RSTB	Строб в репитер	
3	RCLK	Такт. в репитер	
4	4 RGND Общий репитера		
Разъем ХР2			
Конт.	Цепь	Назначение	
2	RXD	Прием RS232	

Соединитель 1688.05.Т1 Измерительные цепи

Конт.	Цепь	Назначение	
1	+24B		
2	-24B	Питание подключ.	
3	+24B	преобразователей	
4	-24B		
5	BX1+	Измерительный	
6	BX1-	канал 1	
7	BX2+	Измерительный	
8	ВХ2-	канал 2	
9	BX3+	Измерительный	
10	ВХЗ-	канал 3	
11	BX4+	Измерительный	
12	ВХ4-	канал 4	
13	ОбщИ	Общ. измерительн.	
15	TB+	Токовый выход +	
16	TB-	Токовый выход –	

Передача RS232

Общ.сигнальный

TXD

SG

- 5. ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ
- 5.1. К работе с прибором допускаются лица, имеющие необходимые знания и навыки, изучившие данный и сопутствующие документы и прошедшие соответствующие инструктажи и проверки знаний согласно Правил технической эксплуатации электроустановок потребителей (ПТЭЭП).
- 5.2. Ввод в эксплуатацию.
- 5.2.1. Произвести монтаж и подключение первичных преобразователей измерительного канала согласно требований документа Аппаратура "ВИБРОБИТ 100" 9.100 РЭ.
- 5.2.2. Подключить к прибору внешние цепи.
- 5.2.3. Подать питание на прибор: при исправности прибора и входных цепей, а также при значении смещения в допустимых пределах, должен загореться зелёный светодиод И. Во время нормальной работы на ЖК-индикаторе отображается численное значение относительного расширения. Значения настроек, введенных в память прибора при изготовлении, указаны в п.9.2.
- 5.2.4. Установить датчик ДВТ40 таким образом, чтобы его смещение относительно ротора, соответствовало нулевому расширению ($S_{\scriptscriptstyle 0}$). При установке датчика и выборе значения $S_{\scriptscriptstyle 0}$ необходимо руководствоваться нормативными документами на контролируемый агрегат.

Рекомендуемое значение смещения $S_{_{0}}$ для измерительного канала OPP находится в диапазоне от 2,0 мм до 8,0 мм.

Значение S_0 контролируется на экране <02> СМЕЩЕНИЕ меню **КОНТРОЛЬ** и после завершения установки датчика вводится в энергонезависимую память прибора в меню **НАСТРОЙКА**: см. п.3.3.6; при вводе необходимо учитывать указанные в п.3.3.6 ограничения.

После ввода значения S_0 необходимо последовательно ввести в память прибора в меню **НАСТРОЙКА** значения OPP, соответствующие уставкам сигнализации и защиты в положительном (ПР+ и AB+) и отрицательном (ПР- и AB-) направлениях (см. п.3.3.6); при вводе необходимо учитывать указанные в п.3.3.6 ограничения.

- 5.2.5. При необходимости изменить остальные настройки прибора в меню **НАСТРОЙКА** с помощью соответствующих экранов: см. рис.3.4.
- При необходимости калибровки всего измерительного канала после подключения первичных преобразователей произвести следующие операции.

Войти в меню **КАЛИБРОВКА**, введя пароль как показано на рис. 3.3. Установить датчик ДВТ40 таким образом, чтобы его смещение соответствовало первой контрольной точке из диапазона измерения: от 0 до 10 мм; ввести значение расширения в память прибора с помощью экрана <01> ТОЧКА 1 меню **КАЛИБРОВКА**: см. рис.3.7.

Аналогично последовательно установить датчик и записать в память прибора значения смещения для второй и третьей контрольных точек.

16

После подтверждения ввода значения смещения для третьей контрольной точки прибор будет откалиброван автоматически.

Для возврата к коэффициенту преобразования смещения, установленному на предприятии-изготовителе, использовать экран <04> меню **КАЛИБРОВКА**.

- 5.3. Виды и периодичность технического обслуживания.
- 5.3.1. Периодический контроль: проводится не реже чем раз в неделю и предусматривает визуальный осмотр прибора и оценку его показаний.
- 5.3.2. Профилактический осмотр: проводится не реже чем один раз в три месяца и предусматривает проверку и затяжку клеммных соединений прибора, проверку входных и выходных цепей.
- 5.3.3. Внеплановое обслуживание: производится при возникновении неисправностей и включает в себя работы, связанные с заменой прибора на исправный.

6. КОМПЛЕКТ ПОСТАВКИ

Прибор 1605.04	1 шт.
Ответные части разъёмов	
Кабели соединительные (по требованию заказчика)	1 комплект.
Соединители клеммные (по требованию заказчика)	. 1 комплект.
Крепёжные детали	. 1 комплект.
Паспорт	1 шт.

7. УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 7.1. Прибор вместе с паспортом должен быть уложен в мешок из полиэтиленовой пленки; допускается использование других упаковочных материалов, если они не снижают надежность упаковки.
- 7.2. Прибор транспортируют в закрытых транспортных средствах любого вида. Значения влияющих климатических и механических воздействий согласно ГОСТ 22261-94 для группы 5.
- 7.3. Прибор разрешается хранить в упаковке при температуре окружающего воздуха от минус 25 °C до плюс 55 °C и относительной влажности воздуха до 95 % при 25 °C.

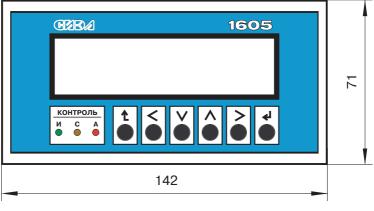
8. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 8.1. Изготовитель гарантирует соответствие технических характеристик прибора значениям п.2.3 при правильном соблюдении потребителем правил эксплуатации, транспортирования и хранения.
- 8.2. Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию. В течение гарантийного срока изготовитель производит бесплатный ремонт, если неисправность вызвана ошибками в технологии изготовления.
- 8.3. В случае возникновения неисправностей прибора необходимо обращаться на предприятие-изготовитель для проведения гарантийного или послегарантийного обслуживания.

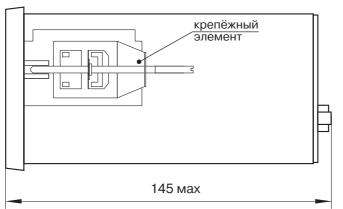
1/

9.	ПРИЕМКА
9.1.	Прибор 1605.04, заводской номер изготовлен и принят и соответствии с обязательными требованиями действующей технической документации и признан годным для эксплуатации.
	Начальник ОТК
	М.П.
	пичная полпись

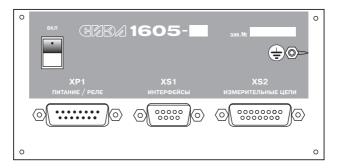
9.2. Настройки прибора на предприятии-изготовителе

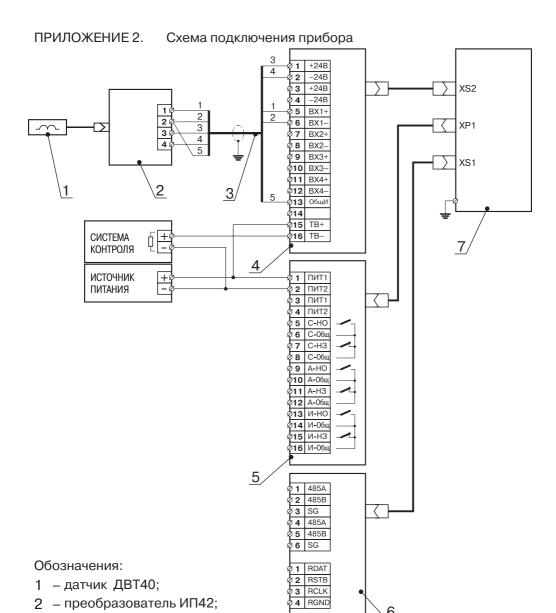

НАЗВАНИЕ ПАРАМЕТРА	ЗНАЧЕНИЕ
Пароль для входа в меню НАСТРОЙКА и УПРАВЛЕНИЕ РЕЛЕ	
Пароль для входа в меню КАЛИБРОВКА	
Номер измерительного канала	
Направление изменения смещения, принимаемое за положительное расширение	
Значение смещения, принимаемое за нулевое расширение, мм	
Аварийная положительная уставка, мм	
Предупредительная положительная уставка, мм	
Аварийная отрицательная уставка, мм	
Предупредительная отрицательная уставка, мм	
Время срабатывания реле, с	
Тип последовательного интерфейса	
Адрес устройства	

10. УЧЕТ ВЫПОЛНЕНИЯ РАБОТ


_	Наименование работы и причина ее выполнения	Должность, фак	иилия и подпись	Примечание
Дата		выполнившего работу	проверившего работу	

ПРИЛОЖЕНИЕ 1. Габаритные размеры прибора.


Вид спереди:



Вид сбоку (без ответных частей разъёмов):

Вид сзади:

3 – кабель соединительный.
 Рекомендуется использовать

Рекомендуется использовать экранированный кабель с витыми парами. Возможно использование экранированных сигнальных кабелей типа КВВГЭ; сечение жилы не более 1,5 мм²; длина не более 250 м.

В комплект поставки не входит

- 4 соединитель клеммный 1688.05.01 комплектно с кабелем;
- 5 соединитель клеммный 1688.05.02 комплектно с кабелем;
- 6 соединитель клеммный 1688.05.03 комплектно с кабелем;
- 7 прибор 1605.04.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46

Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогор

Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта: sey@nt-rt.ru || Сайт: http://syel.nt-rt.ru/